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Abstract

Following related work in law and policy, two notions of disparity have come to shape the
study of fairness in algorithmic decision-making. Algorithms exhibit treatment disparity if they
formally treat members of protected subgroups differently; algorithms exhibit impact disparity
when outcomes differ across subgroups, even if the correlation arises unintentionally. Naturally,
we can achieve impact parity through purposeful treatment disparity. In one thread of technical
work, papers aim to reconcile the two forms of parity proposing disparate learning processes
(DLPs). Here, the learning algorithm can see group membership during training but produce a
classifier that is group-blind at test time. In this paper, we show theoretically that: (i) When
other features correlate to group membership, DLPs will (indirectly) implement treatment
disparity, undermining the policy desiderata they are designed to address; and (ii) When group
membership is partly revealed by other features, DLPs induce within-class discrimination; and
(iii) In general, DLPs provide a suboptimal trade-off between accuracy and impact parity.
Based on our technical analysis, we argue that transparent treatment disparity is preferable
to occluded methods for achieving impact parity. Experimental results on several real-world
datasets highlight the practical consequences of applying DLPs vs. per-group thresholds.

1 Introduction

Effective decision-making requires decision-makers to distinguish between options given the available
features. That much is unavoidable, unless we wish to make trivial decisions. In selection processes,
such as hiring, university admissions, and loan approval, the options are people; the available features
include (but are rarely limited to) direct evidence of qualifications; and the decisions, either positive
or negative, consequentially impact lives.

Laws in many countries restrict the ways in which certain decisions can be made. In the United States,
Title VII of the Civil Rights Act of 1964 [Civ, 1964], forbids employment decisions that discriminate
on the basis of the following protected characteristics: race, color, religion, sex, and national origin.
The interpretation of this law has led to two widely-referenced notions of discrimination: disparate
treatment and disparate impact.
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Disparate treatment addresses intentional discrimination. This includes: (i) decisions explicitly
based on a protected characteristic; and (ii) intentional discrimination via proxy variables. For
example, in the 1900s, literacy tests for voting eligibility were employed to disenfranchise racial
minorities.

Disparate impact addresses facially neutral practices that might nevertheless have an “unjustified
adverse impact on members of a protected class” [Civ, 1964]. Absent intentional discrimination,
unequal outcomes can emerge due to correlations between protected and unprotected characteristics.
For example, black defendants are sentenced to death more frequently than white defendants for
the same crimes [Ford, 2014]. While this likely owes significantly to the racial biases of judges and
juries, it also might owe, in part, to the correlation between race and wealth, and by extension,
access to legal services. Unequal outcomes may not always signal unlawful discrimination. For
example, the over-representation of Asian students in prestigious US colleges does not appear to
entail pro-Asian discrimination. On the contrary, investigative reports suggest that it arises despite
admissions policies that set higher bars for Asian applicants [Hartocollis and Saul, 2017].

Recently, owing to the increased use of machine learning (ML) to make (or assist in) consequential
decisions, the topic of quantifying and mitigating ML-based discrimination has attracted interest
among both practitioners and academics in both policy and ML. However, while the existing legal
doctrine offers qualitative ideas expressed in prose, intervention in an ML-based system requires
more concrete mathematical formalism.

Loosely inspired by the relevant legal concepts, technical papers have proposed several criteria to
quantify discrimination. One criterion requires that the fraction given a positive decision be equal
across different groups. Another criterion states that a classifier should be blind to the protected
characteristic. Within the technical literature, these criteria are commonly referred to as disparate
impact and disparate treatment, respectively.

In this paper, we will call these technical criteria impact parity and treatment parity, to distinguish
them from their legal antecedents. The distinction between technical and legal terminology is
important to maintain. While impact parity and treatment parity are inspired by legal concepts, we
contend that technical approaches that achieve these criteria may fail to satisfy the underlying
legal and ethical desiderata of the motivating policy problem.

We demonstrate how this disconnect arises in the context of a class of algorithms that we denote
Disparate Learning Processes (DLPs). DLPs are methods for simultaneously satisfying treatment-
and impact-parity criteria [Pedreshi et al., 2008, Kamishima et al., 2011, Zafar et al., 2017a]. DLPs
operate according to the following principle: The protected characteristic may be used during training,
but is not available to the model at prediction time. In the earliest such approach, Pedreshi et al.
[2008] use the protected characteristic to winnow the set of acceptable rules from an expert system.
In other papers, the protected characteristic is incorporated into the learning objective as either a
regularizer or constraint or is used in preprocessing the training data [Kamiran and Calders, 2009,
Kamiran et al., 2010, Zafar et al., 2017a].

These approaches are grounded in the premise that DLPs are acceptable in cases where using a
protected characteristic as a direct input to the model would constitute disparate treatment and
thus be impermissible. We call this premise into question on the following grounds:

1. When protected characteristics are redundantly encoded in the other features, sufficiently
powerful DLPs can (indirectly) implement any form of treatment disparity.
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2. When protected characteristics are partially encoded DLPs induce within-class discrimination
based on irrelevant features, and can harm some members of the protected group.

3. While disparate treatment is by definition illegal, the legal status of treatment disparity is a
subject of debate [Kim, 2017].

4. DLPs provide a suboptimal trade-off between accuracy and impact parity. The optimal way
to trade off the two is to apply per-group thresholds, effecting treatment disparity.
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Figure 1: Demonstration of a DLP’s undesirable side effects on a simple example of hiring data
(see §4.1). Unconstrained classifier (vertical line) hires candidates based on work experience,
yielding higher hiring rates for men than for women. A DLP (dashed diagonal) achieves parity by
differentiating based on an irrelevant attribute (hair length). The DLP hurts some short-haired
women, flipping their decisions to reject, and helps some long-haired men.

The capacity of DLPs to carry out treatment disparity indirectly casts doubt on whether, under
the law, they would be viewed differently from approaches that directly apply treatment disparity.
A recent California Law Review paper [Grimmelmann and Westreich, 2017] supports this view,
illustrating their arguments in the “law-school hypothetical state" of Zootopia, where the protected
groups are species.

In our view, Title VII does not permit an employer to do indirectly what it could not do
directly. An employer that explicitly selects applicants on the basis of species violates
Title VII under a disparate treatment theory, regardless of whether species is correlated
with job performance, and regardless of whether it bears animus against particular
species. It is the selection “on the basis of” species that is the problem. An employer that
uses home address to infer applicants’ species and then selects applicants from particular
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species does exactly the same, only in two steps rather than one. This too is a form of
disparate treatment.

Organization The rest of this paper lays out our main arguments on theoretical (§2 & §3),
empirical (§4), and qualitative (§6) grounds.

2 Disparate Learning Processes

To begin our formal description of the prior work, we’ll introduce some notation. A dataset consists
of n examples, or data points {xi ∈ X , yi ∈ Y}, each consisting of a feature vector xi and a label yi.
A supervised learning algorithm f : Xn × Yn → (X → [0, 1]) is a mapping from datasets to models.
The learning algorithm produces a model ŷ : X → Y, which given a feature vector xi, predicts the
corresponding output yi. In this discussion, we’ll focus on binary classification, the setting in which
the label y takes values from the set Y = {0, 1}.

This paper considers probabilistic classifiers, which produce estimates p̂(x) of the conditional
probability P(y = 1 | x) of the label given a feature vector x. To make a prediction ŷ(x) ∈ Y given
an estimated probability p̂(x) a threshold rule is used: ŷi = 1 iff p̂i > t. The optimal choice of the
threshold t depends on the performance metric being optimized. In our theoretical analysis we
consider optimizing the immediate utility, as introduced in Corbett-Davies et al. [2017], of which
classification accuracy (expected 0−1 loss) is a special case. We will define this metric more precisely
in the next section.

In formal descriptions of discrimination-aware ML, a dataset possesses a protected feature zi ∈ Z,
making each example a three-tuple (xi, yi, zi). The protected characteristic may be real-valued, like
age, or categorical, like race or gender. The goal of many methods in discrimination-aware ML is
not only to maximize accuracy, but also to ensure some form of impact parity. Following related
work, we consider binary protected features that divide the set of examples into two groups a and b.
Our analysis extends directly to settings with more than two groups.

Of the various measures of impact disparity that have been proposed, the two that are the most
relevant here are the Calders-Verwer gap and the p-% rule. At a given threshold t, let
qz = 1

nz

∑
i:zi=z 1(p̂i > t), where nz =

∑n
i 1(zi = z). The Calders-Verwer (CV) gap,

CV = qa − qb,

is the difference between the proportions assigned to the positive class in the advantaged group (a)
and the disadvantaged group (b) [Kamishima et al., 2011]. The p-% rule, as described in Zafar et al.
[2017a], is a closely related metric that measures impact disparity as qb/qa. A classification is said
to satisfy the p-% rule if qb/qa ≥ p/100. This metric is motivated by a text on fair employment
practices [Biddle, 2006], in which it is stated that cases where the ratio qb/qa is below 0.8 are
problematic.

Many papers in discrimination-aware ML propose to optimize accuracy (or some other risk) subject
to constraints on the resulting level of impact parity as assessed by some metric [Pedreshi et al.,
2008, Kamiran et al., 2010, Dwork et al., 2017, Bechavod and Ligett, 2017, Hardt et al., 2016, Ritov
et al., 2017]. Papers proposing DLPs [Pedreshi et al., 2008, Kamiran and Calders, 2009, Zafar
et al., 2017a] take as a premise that using the protected feature z as a model input is impermissible
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in this effort, as it amounts to treatment disparity. Discarding protected features, however, does
not guarantee impact parity. As discussed in Dwork et al. [2012], even if the protected features
are discarded, the model may still produce classifications that are correlated with z. Instead of
discarding the protected features, DLPs incorporate z in the learning algorithm, but not in the
classifier itself. Formally, a DLP is a learning algorithm described by the following mapping:

DLP : Xn × Yn ×Zn → (X → Y).

Since z is not a direct input to the resulting model, DLPs achieve treatment parity. DLP papers
suggest that, as a result, such models have better legal standing (vis-a-vis disparate treatment)
than a model that uses z directly. As we show next (§3), under some circumstances, DLPs can
(indirectly) realize any function achievable through treatment disparity. Moreover, as discussed in
§1, certain recent legal scholarship suggests that DLPs, while satisfying the technical criterion of
treatment parity, may nevertheless run afoul of disparate treatment [Grimmelmann and Westreich,
2017].

3 Theoretical Analysis

In this section we introduce our theoretical arguments. We present a set of simple theoretical
results that demonstrate the optimality of treatment disparity, and highlight properties of DLPs.
Our optimality results are all derived in the population or infinite data setting, where we assume
knowledge of the true conditional probability function pY |X,Z(x, z) ≡ P(Y = 1 | X = x, Z = z). The
main results of this section can be summarized as follows:

1. Direct treatment disparity on the basis of z is the optimal strategy for maximizing classification
accuracy1 subject to CV and p-% constraints.

2. When X fully encodes Z, a sufficiently powerful DLP is equivalent to treatment disparity.

In the next section (§4), we empirically demonstrate a related point:

(3) When X only partially encodes Z, a DLP may be suboptimal and can induce intra-group
disparity on the basis of otherwise irrelevant features correlated with Z.

Treatment disparity is optimal Absent impact parity constraints, the Bayes-optimal decision
rule for minimizing expected 0− 1 loss (i.e., maximizing accuracy) is given by

d∗uncon(x, z) =

{
1 pY |X,Z(x, z) ≥ 0.5

0 otherwise
.

In this section, we show that the optimal decision rule in the CV and p-% constrained problems has
a similar form. The optimal decision rule will again be based on thresholding pY |X,Z(x, z), but at
group-specific thresholds.

1Our results are all presented in terms of a more general performance metric, of which classification accuracy is a
special case.
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These rules can be thought of as operationalizing the following mechanism: Suppose that we start
with the classifications of the unconstrained rule d∗uncon(x, z), and this results in a CV gap of
qa − qb > γ. To reduce the CV gap to γ we have two mechanisms: (i) We can flip predictions of
cases in group b from 0 to 1, and (ii) we can flip predictions of cases in group a from 1 to 0. The
optimal strategy is to perform these flips on group b cases that have the highest value of pY |X,Z(x, z)
and group a cases that have the lowest value of pY |X,Z(x, z).

The results in this section adapt the work of Corbett-Davies et al. [2017], who establish optimal
decision rules d under different kinds of fairness-related constraints. In that work, the authors
characterize the optimal decision rule d = d(x, z) that maximizes the immediate utility u(d, c) =
E[Y d(X,Z) − cd(X,Z)] for (0 < c < 1), under different parity criteria. We begin with a lemma
showing that expected classification accuracy has the functional form of an immediate utility
function.
Lemma 1. Optimizing classification accuracy is equivalent to optimizing immediate utility with
c = 0.5.

Proof. The expected accuracy of a binary decision rule d(X) can be written as E[Y d(X) + (1 −
Y )(1− d(X))]. Expanding and rearranging this expression gives

E[Y d(X) + (1− Y )(1− d(X))] = E(2Y d(X)− d(X)) + E(Y ) + 1

= 2u(d, 0.5) + E(Y ) + 1.

The only term in this expression that depends on d is the immediate utility, u. Thus the decision
rule that maximizes u also maximizes accuracy.

Before proceeding to the main technical results, we note that the results in this section are closely
related to the concurrent independent work of Menon and Williamson [2018]. In their paper, the
authors derive Bayes-optimal decision rules under the same parity constraints we consider here,
working instead with the cost-sensitive risk,

CS(d; c) = π(1− c)FNR(d) + (1− π)cFPR(d),

where π = P(Y = 1). One can show that u(d, c) = −CS(d; c) + π(1− c), and hence the problem of
maximizing immediate utility considered here is equivalent to minimizing cost-sensitive risk as in
Menon and Williamson [2018]. In our case, it will be more convenient to work with the immediate
utility.

For the next set of results, we follow Corbett-Davies et al. [2017] and assume that pY |X,Z(X,Z),
viewed as a random variable, has positive density on [0, 1]. This ensures that the optimal rules
are unique and deterministic by disallowing point-masses of probability that would necessitate
tie-breaking among observations with equal probability. The first result that we state is a direct
corollary of two results in Corbett-Davies et al. [2017]. It considers the case where we desire exact
parity, i.e., that qa = qb.
Corollary 2. The optimal decision rules d∗ under various parity constraints have the following
form and are unique up to a set of probability zero:

1. Among rules satisfying statistical parity (the 100% rule), the optimum is

d∗(x, z) =

{
1 pY |X,Z(x, z) ≥ tz
0 otherwise

,
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where tz ∈ [0, 1] are constants that depend only on group membership z.

2. Among rules that have equal false positive rates across groups, the optimum is

d∗(x, z) =

{
1 pY |X,Z(x, z) ≥ sz
0 otherwise

,

where sz are constants that depend only on group membership z (but are different from tz).

3. (1) and (2) continue to hold even in the resource-constrained setting where the overall proportion
of cases classified as positive is constrained.

Proof. (1) and (2) are direct corollaries of Lemma 1 combined with Theorem 3.2 and Prop 3.3 of
Corbett-Davies et al. [2017].

The next set of results establishes optimality under general p-% and CV rules.
Proposition 3. Under the same assumptions as above, the optimum among rules that satisfy the
CV constraint 0 ≤ qa − qb < γ or the p-% rule also has the form

d∗(x, z) =

{
1 pY |X,Z(x, z) ≥ tz
0 otherwise

,

where tz ∈ [0, 1] are constants that depend on the group membership z, and on the choice of constraint
parameter γ or p. The thresholds tz are different for the CV constraint and p-% rule.

Proof. Suppose that the optimal solution under the CV or p-% rule constraint classifies proportions
qa and qb of the advantaged and disadvantaged groups, respectively, to the positive class. As shown
in Corbett-Davies et al. [2017], we can rewrite the immediate utility as

u(d, 0.5) = E[d(X,Z)(pY |X,Z − 0.5)].

From this expression, it is clear that the utility will be maximized precisely when d∗(X,Z) = 1
for the qz proportion of individuals in each group that have the highest values of pY |X,Z . Since
the optimal values of qz may differ between the CV-constrained solution and the p-% solution, the
optimal thresholds may differ as well.

The final result in this section shows that a decision rule that does not directly use z as an input
variable or for determining the thresholds will have lower accuracy than the optimal rule that uses
this information. That is, we show that DLPs are suboptimal for trading off between accuracy and
impact parity.
Theorem 4. Let d∗(x, z) be the optimal decision rule under a the CV-γ or p-% constraint. Let
dDLP (x) be the optimal solution to a DLP. If d(x, z) and dDLP (x) satisfy CV or p-% constraints
with the same qa and qb, the DLP solution results in lower or equal accuracy. (equal only if the
solutions are the same.)
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Proof. From Proposition 3, we know that the unique accuracy-optimizing solution is given by

d∗(x, z) =

{
1 pY |X,Z(x, z) ≥ tz
0 otherwise

,

where tz is the 1 - qz quantile of pY |X,Z . The difference in immediate utility between the two decision
rules can be expressed as follows:

E[d∗(X,Z)(pY |X,Z − 0.5)]− E[dDLP (X)(pY |X,Z − 0.5)]

= E[(d∗(X,Z)− dDLP (X))(pY |X,Z − 0.5)]

= E[pY |X,Z − 0.5 | d∗ = 1, dDLP = 0]P(d∗ = 1, dDLP = 0)

− E[pY |X,Z − 0.5 | d∗ = 0, dDLP = 1]P(d∗ = 0, dDLP = 1)

=
(
E[pY |X,Z − 0.5 | d∗ = 1, dDLP = 0]

− E[pY |X,Z − 0.5 | d∗ = 0, dDLP = 1]
)
P(d∗ = 1, dDLP = 0)

≥ 0

The final inequality follows from the observation that d∗(X,Z) = 1 for the highest values of pY |X,Z ,
so pY |X,Z is stochastically greater on the event {d∗ = 1, dDLP = 0} than on {d∗ = 0, dDLP = 1}.
Note that equality holds only if P(d∗ = 1, dDLP = 0) = 0, i.e., if the two rules are equivalent with
probability 1.

All of the results in this section continue to hold under “do no harm” constraints, where we require
that any individual in the disadvantaged group who was classified as positive under the unconstrained
rule duncons(x, z) remains positively classified. This corresponds to the setting where the proportion
of cases in the disadvantaged group classified as positive is constrained to be no lower than the
proportion under the unconstrained rule duncons(x, z) (or no lower than some fixed value qmin

a ). Such
constraint impose an upper bound on the optimal thresholds tb, but do not change the structure of
the optimal rules.

Functional equivalence when protected characteristic is redundantly encoded Consider
the case where the protected feature z is redundantly encoded in the other features x. More precisely,
suppose that there exists a known subcomputation g such that z = g(x). This allows for any
function of the data f(x, z) to be represented as a function of x alone via f̃(x) = f(x, g(x)). While it
remains the case that f̃(x) does not directly use z as an input variable—and thus satisfies treatment
parity—f̃ should be no less legally suspect from a disparate treatment perspective than the original
function f that uses z directly. The main difference for the purpose of our discussion is that f̃ ,
resulting from a DLP, may technically satisfy treatment parity, while f does not.

Within-class discrimination when protected characteristic is partially redundantly en-
coded When the protected characteristic is partially encoded in the other features, disparate
treatment may induce within-class discrimination by applying the benefit of the affirmative action
unevenly, and can even harm some members of the protected class. In the following section, we
demonstrate this phenomenon empirically using synthetic data, university admissions data, and
several public datasets. The ease of producing such examples might convince the reader that the
highly varied effects of intervention with a DLP on members of the disadvantaged group raise serious
questions about the usefulness of DLPs.
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4 Empirical Analysis
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Figure 2: (left) probability of the sensitive variable versus (unconstrained) admission probability, on
unseen test data. Downward triangles indicate individuals who are rejected only after applying the
DLP, while upward triangles indicate individuals accepted only by the DLP. The remaining ∼4,000
blue/yellow dots indicate people whose decisions are not altered. Note that most students benefiting
from the DLP are males who ‘look like’ females based on other features, whereas females who ‘look
like’ males are hurt by the DLP. Detail view (center) and summary statistics (right) of the same
plot.

This preceding analysis demonstrates several theoretical advantages to increasing impact parity via
treatment disparity:

• Optimality: As demonstrated for CV score and for p-% rule, intervention via per-group
thresholds maximizes accuracy subject to an impact parity constraint.

• Rational ordering: Within each group, individuals with higher probability of belonging
to the positive class are always assigned to the positive class ahead of those with lower
probabilities.

• Does no harm to the protected group: The treatment disparity intervention can be
constrained to only benefit members of the disadvantaged class.

In order to avoid treatment disparity, DLPs attempt to produce a classifier that satisfies the parity
constraints, by relying upon the proxy features to satisfy the parity metric. Typically, this is
accomplished either by introducing constraints to a convex optimization problem, or by adding
a regularization term and tuning the corresponding hyper-parameter. Because the CV score and
p-% rule are non-convex in model parameters (scores only change when a point crosses the decision
boundary), Kamishima et al. [2011], Zafar et al. [2017a] introduce convex surrogates aimed at
reducing the correlation between the sensitive feature and the prediction.

These approaches presume that the proxy variables contain information about the sensitive attribute.
Otherwise, the parity could only be satisfied via a trivial solution (e.g. assign either everyone or
nobody to the positive class). So we must consider two scenarios: (i) the proxy variables x fully
encode z, in which case, a sufficiently powerful DLP will implicitly reconstruct z, because this gives
the optimal solution to the impact-constrained objective; and (ii) x doesn’t fully capture z, in which
case the DLP may be sub-optimal, violate rational ordering within groups, and harm members of
the disadvantaged group.
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4.1 Synthetic data example: work experience and hair length in hir-
ing

To begin, we illustrate our arguments empirically with a simple synthetic data experiment. To
construct the data, we sample nall = 2000 total observations from the data-generating process
described below. 70% of the observations are used for training, and the remaining 30% are reserved
for model testing.

zi ∼ Bernoulli(0.5)

hair_lengthi | zi = 1 ∼ 35 · Beta(2, 2)

hair_lengthi | zi = 0 ∼ 35 · Beta(2, 7)

work_expi | zi ∼ Poisson(25 + 6zi)−Normal(20, σ = 0.2)

yi | work_exp ∼ 2 · Bernoulli(pi)− 1, where
pi = 1/ (1 + exp[−(−25.5 + 2.5work_exp)])

This data-generating process has the following key properties: (i) the historical hiring process was
based solely on the number of years of work experience; (ii) because women on average have fewer
years of work experience than men (5 years vs. 11), men have been hired at a much higher rate
than women; and (iii) women have longer hair than men, a fact that was irrelevant to historical
hiring practice.

Figure 1 shows the test set results of applying a DLP to the available historical data to equalize
hiring rates between men and women. We apply the DLP proposed by Zafar et al. [2017a], using
code available from the authors.2 While the DLP successfully equalizes hiring rates (satisfying a
100-% rule), it does so through a problematic within-class discrimination mechanism. The DLP
rule advantages individuals with longer hair over those with shorter hair and considerably longer
work experience. We find that several women who would have been hired under historical practices,
owing to their 11+ years of work experience, would not be hired under the DLP due to their short
hair (i.e., their male-like characteristics captured in x). Similarly, several men, who would not have
been hired based on work experience alone, are advantaged by the DLP due to their longer hair
(i.e., their ‘female-like’ characteristics in x). The DLP violates rational ordering, and harms some
of the most qualified individuals in the protected group. Group parity is achieved at the cost of
individual unfairness.

Granted, we might not expect factors such as hair length to knowingly be used as inputs to a typical
hiring algorithm. We construct this toy example to illustrate a more general point: since DLPs do
not have direct access to the protected feature, they must infer from the other features which people
are most likely to belong to each subgroup. Using the protected feature directly can yield more
reasonable policies: For example, by applying per-group thresholds, we could hire the highest rated
individuals in each group, rather than distorting rankings within groups based on how female/male
individuals appear to be from their other features.

2https://github.com/mbilalzafar/fair-classification/

10

https://github.com/mbilalzafar/fair-classification/


4.2 Case study: Gender bias in CS graduate admissions

For our next example, we demonstrate a similar result but this time by analyzing real data from the
Master’s admissions process of a large public university. We consider a sample of ∼9,000 students
considered for admission over an 11-year period spanning 2006-2016. Half of the examples are
withheld for testing. The available attributes include basic demographic information, such as country
of origin, interest areas, and gender, as well as quantitative information such as GRE scores. Our
data also includes a label in the form of a decision provided by an admissions committee.3

Based on a superficial analysis, we did not observe any gender bias (the admissions rates for male
and female applicants are within 1% of each other). So, to demonstrate the effects of DLPs, we
corrupt the data with synthetic discrimination. Of all women who were admitted, i.e., zi = b, yi = 1,
we flip 25% of those labels to 0: giving noisy labels ȳi = yi · η, for η ∼ Bernoulli(.25). This simulates
a setting in which the training data exhibits a historical bias.

We then train three logistic regressors: (1) To predict the (prejudice-corrupted) labels from the
non-sensitive features {xi, ȳi}; (2) The same model, applying the fairness constraint of Zafar et al.
[2017a]; and (3) A logistic regressor that predicts the sensitive feature from the non-sensitive features
{xi, zi}. The data contains limited information that can predict gender, though such predictions
can be made better than random (AUC=0.59) due to different rates of gender imbalance across
(e.g.) countries and interest areas.

Figure 2 (left) shapes our basic intuition for what is happening here: Considering the probability
of admission for the unconstrained classifier (y-axis), students whose decisions are ‘flipped’ (after
applying the fairness constraint) tend to be those close to the decision boundary. Furthermore,
students predicted to be male (x-axis) tend to be flipped to the negative class (left half of plot) while
students predicted to be female tend to be flipped to the positive class (right half of plot). This is
shown in detail in Figure 2 (center and right). However, of the 19 students whose decisions are flipped
to ‘admit,’ the majority (10) are males, each of whom has ‘female-like’ characteristics according
to their other features, as demonstrated in our synthetic hair-length example. Demonstrated here
with real-world data, the DLP both disrupts the within-group ordering and violates the do no harm
principle by disadvantaging some women who, but for the DLP, would have been admitted.

4.2.1 Comparison with Treatment Disparity

To demonstrate the better performance of per-group thresholding (violating treatment parity), we
implement a simple decision scheme and compare its performance to the DLP. Assuming that our
model gives us calibrated probabilities, and that this is all the information available to the decision
maker, it’s easy to derive the optimal thresholds for maximizing expected accuracy under linear
constraints on the proportions of predicted positives, like the CV-gap or p-% rule.

Our thresholding rule for maximizing accuracy subject to a p-% rule works as follows: Recall that
the p-% rule requires that qb/qa > p/100. We can rewrite this as:

p

100
qa − qb < 0

3 These decisions do not precisely determine whether a student is made an offer, but rather represent an
‘above-the-bar’ assessment that is used to guide admissions decisions, and can be considered as a binary label.

11



Table 1: Comparison between unconstrained classification, DLPs, and thresholding schemes. Note
that the p-% rules from Zafar et al. [2017a] were the strongest that could be obtained with their
method; on complex datasets p-% rules of 100% are rarely obtained in practice, due to their specific
approximation scheme. Employee and Customer datasets are from IBM, the others are UCI datasets.

basic statistics
naïve

(unconstrained)
classification

fair
(constrained)
classification
[Zafar et al.,

2017a]

optimal
threshold

dataset %prot.
%prot.
in

+’ve

%non-
prot.

in +’ve
label p-% acc.

prot./non-
prot.
in

positive

p-% acc.

prot./non-
prot.
in

positive

p-%
p-% at
const.
acc.

a b c d e f g h i j k l

Income 66.9% 30.6% 10.9% 35.8% 0.85 8% / 25% 31% 0.85 7% / 24% 29% 52.9%
Marketing 60.2% 14.1% 10.1% 71.9% 0.89 3% / 4% 82% 0.89 3% / 3% 102% 100.3%
Credit 60.4% 24.1% 20.8% 86.0% 0.82 10% / 12% 88% 0.74 21% / 25% 85% 100.0%
Employee 45.8% 19.2% 12.5% 65.0% 0.87 8% / 12% 65% 0.86 8% / 11% 69% 100.4%
Customer 48.3% 33.0% 19.7% 59.7% 0.80 15% / 30% 49% 0.79 16% / 19% 84% 100.2%

Like the CV-gap, the p-% rule imposes a linear constraint. We denote the quantity p
100qa− qb as the

p-gap. To maximize accuracy subject to satisfying the p-% rule, we construct a score that quantifies
reduction in p-gap per reduction in accuracy. Starting from the accuracy-maximizing predictions
(thresholded at .5), we then flip those predictions which close the gap fastest:

1. Assign each example with {ỹi = 0, zi = b} or {ỹi = 1, zi = a}, a score ci equal to the reduction
in the CV-gap divided by the reduction in accuracy:

(a) For each example in group a with initial ŷi = 1,
ci = p

100na(2p̂i−1) .

(b) For each example in group b with initial ỹi = 0,
ci = 1

nb(1−2p̂i)
.

2. Flip examples in descending order according to this score until the desired CV-score is reached.

These scores do not change after each iteration. So the greedy policy is optimal.

This dataset revealed that the method due to Zafar et al. [2017a] cannot produce any specified
p-%-rule. On the admissions data, their algorithm maxes out at a p-% rule of 77.59%, compared
to a p-% rule of 71.44% by naïve classification (on unseen test data). Both have similar accuracy:
given that both positive labels and female applicants are a minority, assigning negative labels to
males close to the boundary impacts accuracy very little. Both methods had accuracy of around
78% on this data. Critically though, by applying an optimal thresholding strategy, we were able
to obtain the same accuracy as the method of Zafar et al. [2017a], but with a higher p-% rule of
78.34%; subject to a < 1% drop in accuracy we can achieve a p-% rule of ∼ 100%. Similarly, we

12



Table 2: Statistics of public datasets.

dataset source prot. feature prediction target n

Income UCI [Kohavi, 1996] Gender (female) income > $50k 32,561
Marketing UCI [Moro et al., 2014] Status (married) customer subscribes 45,211
Credit UCI [Yeh and Lien, 2009] Gender (female) credit card default 30,000
Employee Attr. IBM [ibm] Status (married) employee attrition 1,470
Customer Attr. IBM [ibm] Status (married) customer attrition 7,043

could achieve a modest improvement in accuracy (<0.1%) while maintaining the same p-% rule as
the method of Zafar et al. [2017a].

4.3 Examples on public datasets

Finally, for reproducibility, we repeated our experiments from Section 4.2 on a variety of public
datasets.4 Again we compare applying our simple thresholding scheme against the fairness constraint
of Zafar et al. [2017a], considering a binary outcome and a single protected feature. Basic info about
these datasets (including the prediction target and protected feature) is shown in Table 2.

The protocol we follow is the same as in Section 4.2. Each of these datasets exhibits a certain degree
of bias w.r.t. the protected characteristic (Table 1), so no synthetic discrimination is applied. In
Table 1, we compare (1) The p-% rule obtained using the classifier of Zafar et al. [2017a] compared to
that of a naïve classifier (column k vs. column h); and (2) The p-% rule obtained when applying our
thresholding strategy from Section 4.2.1. As before, half of the data are withheld for testing.

First, we note that in most cases, the method of Zafar et al. [2017a] increases the p-% rule (column k
vs. h), while maintaining an accuracy similar to that of unconstrained classification (column i vs. f).
One exception is the UCI-Credit dataset, in which both the accuracy and the p-% rule simultaneously
decrease; although this is against our expectations, note that the optimization technique of Zafar
et al. [2017a] is an approximation scheme and does not offer accuracy guarantees in practice (nor
can it in general achieve a p-% rule of 100%). However these details are implementation-specific and
not the focus of this paper.

Second, as in Section 4.2.1, we note that the optimal thresholding strategy is able to offer a strictly
larger p-% rule (column l vs. k) at a given accuracy (in this case, the accuracy from column i). In
most cases, we can obtain a p-% rule of (close to) 100% at the given accuracy.

We emphasize that the goal of our experiments is not to ‘beat’ the method of Zafar et al. [2017a], or
even to comment on any specific discrimination-aware classification scheme. Rather, we emphasize
that any DLP is fundamentally upper-bounded (in terms of the p-% rule/accuracy trade-off) by
simple schemes that explicitly consider the protected feature. Not only do our experiments validate
this claim, but they also reveal that the practical difference between the two schemes is large:
the two schemes make strikingly different decisions, and while ‘hiding’ the protected feature from
the classifier may be conceptually desirable, practitioners of such schemes should be aware of the
consequences of doing so.

4Code and data available on http://jmcauley.ucsd.edu/code/fairness/

13

http://jmcauley.ucsd.edu/code/fairness/


5 Related Work Beyond DLPs

In this section we provide a brief overview of some of the other approaches that have been put forth
for trading off between classification performance and impact disparity. One common approach
consists of preprocessing or “massaging” the training data to reduce the dependence between the
resulting model predictions and the sensitive attribute [Kamiran and Calders, 2009, 2012, Feldman
et al., 2015, Adler et al., 2016, Johndrow and Lum, 2017]. These methods differ both in terms of
what variables are affected by the data processing, and the degree of independence that is achieved.
For instance, Kamiran and Calders [2009] propose flipping the negative labels of some observations
in the disadvantaged class. Zemel et al. [2013] proposes learning representations—in this case, cluster
assignments—of each example such that each example maps to a cluster with some probability,
seeking parity in the proportion of each group assigned to each cluster. Feldman et al. [2015]
also investigates transformations of the features X into a new set of features that are constructed
to be marginally independent from Z. Johndrow and Lum [2017] demonstrate how to construct
transformations to ensure that the derived features are jointly independent of Z, and show that this
produces distributional parity of the resulting fitted model.

A second common approach is to modify existing classification methods either through post-hoc
corrections or in the training stage to constrain the level of impact parity in the resulting model.
Kamishima et al. [2011], Goh et al. [2016], Calders and Verwer [2010], Kamiran et al. [2010] consider
modifications to methods such as SVM, logistic regression, Naive Bayes, and decision trees. Agarwal
et al. [2017] show how impact parity constraints can be framed as a cost-sensitive classification
problem.

6 Discussion

Now that we have expressed our primary technical arguments, we return to the critical questions
driving research in discrimination-aware classification. The arguments in this portion of the paper
address both the difficulty of communicating desiderata across disciplines, the relationship between
classification and decision-making, and promising research directions in discrimination-aware ML
beyond narrow considerations of the two parity measures that we focused on in earlier sections.

6.1 Coming to terms with treatment disparity

At present, academic work in law and machine learning tends to take place in a disjoint set of
journals, and with notable exceptions researchers typically attend a disjoint set of conferences. These
communities occasionally intersect when some paper, such as the widely-influential California Law
Review article due to Barocas and Selbst [2016], reaches a cross-disciplinary audience and captures
popular attention. However, the subsequent interdisciplinary work is often again siloed by discipline.
Technical work tends to be published in technical conferences, where the peer-reviewers may be
ill-equipped to identify shortcomings in problem formulation.

This sort of disciplinary isolation enables legal terms such as disparate treatment and disparate
impact to be overloaded to mean something different from their legal antecedents. As a result,
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methodological solutions guided by technical interpretations of legal criteria might nevertheless turn
out to be incompatible with the policy desiderata they are designed to satisfy. Such solutions are
unlikely to be adopted in practice. In the present context, we argue that (i) DLPs would enjoy
no better legal standing than explicit treatment disparity if tested under the law (as supported in
Grimmelmann and Westreich [2017]); and, (ii) some form of treatment disparity may already be
tolerated under the law in order to ensure more fair outcomes. The latter view is supported by
Pauline Kim in her paper Data-driven discrimination at work [Kim, 2017]:

A formalist reading of Title VII might appear to prohibit any use of variables capturing
sensitive characteristics in a data model. Certainly, a simple model that relied on race
or other protected characteristics as the basis for adverse decisions would run afoul
of Title VII’s prohibitions. However, when dealing with a complex statistical model
involving multiple variables, the appropriate treatment of these sensitive variables is more
complicated. If the goal is to reduce biased outcomes, then a simple prohibition on using
data about race or sex could be either wholly ineffective or actually counterproductive due
to the existence of class proxies and the risk of omitted variable bias. Instead, avoiding
classification bias may sometimes call for excluding sensitive demographic variables and
at other times call for including them. Any response to biased data models must be
sensitive to these nuances.

On the balance of these considerations, there are several compelling reasons for practitioners to
promote equality more transparently through direct treatment disparity, rather than through hidden
changes to the learning algorithm. As articulated earlier, treatment disparity approaches have three
principal advantages over DLPs: they optimally trade accuracy for representativeness, preserve
rankings among members of each group (as compared to the unconstrained scores), and do no harm
to members of the disadvantaged group.

In addition to these three properties, treatment disparity has another advantage: by setting class-
dependent thresholds, it’s much easier to quantify intuitively how treatment disparity impacts
individuals. Having such a quantity to reason about might help policy-makers to decide what
magnitude of treatment disparity best trades off group equality and individual fairness. With
indirect methods for increasing impact parity, it might be harder to reason about the intervention.
As an example, it seems harder to express policy in terms of the value of a regularization coefficient
(compared to a threshold).

Several key challenges remain. The theoretical arguments in this paper demonstrate that thresholding
approaches are optimal in the setting where we assume complete knowledge of the data-generating
distribution. It is not always clear how best to realize these gains in practice, where imbalanced
or unrepresentative data sets can pose a significant obstacle to accurate estimation. Furthermore,
some of our results are tailored to the CV or the p-% rule notions of group parity. As shown in
Hardt et al. [2016], Woodworth et al. [2017] and Dwork et al. [2017], satisfying other parity criteria
can be more difficult.

6.2 Separating estimation and decision-making

In the context of algorithmic, or algorithm-supported decision-making, it’s often useful to obtain
not just a classification, but also an accurate probability estimate. These estimates could then be
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incorporated into the decision-theoretic part of the pipeline where appropriate measures could be
taken to align decisions with social desiderata. By intervening at the modeling phase, DLPs distort
the predicted probabilities themselves. It’s not clear what the outputs of the resulting classifiers
actually signify. In unconstrained learning approaches, even if the label itself may reflect historical
prejudice, one at least knows what is being estimated. This leaves open the possibility of intervening
at decision time to promote more equal outcomes.

While the distinction between building a model and making decisions is stated clearly in the
first modern work on discrimination-aware classification [Pedreshi et al., 2008], this distinction is
frequently muddled in subsequent papers. For example, Kamiran and Calders [2009] state that “a
learned model may exhibit unlawfully prejudiced behavior.” The conflation of modeling and decision-
making may lead to counterproductive modifications to learning algorithms that do not adequately
account for how models are actually used in practice. For example, these papers often assume that
decision makers desire to optimize accuracy and hence that decisions will be made by thresholding
probability estimates at 0.5. That’s not typically how ML works in real-world applications. First,
due to differences in the cost of false positives and false negatives, accuracy is seldom the most
task-relevant metric. Furthermore, decision-makers are often faced with a multi-objective problem
that entails considerations beyond what the algorithm is designed to predict.

6.3 Fairness beyond disparate impact

How best to quantify discrimination and unfairness remains an important open question. The CV
scores and p−% rules addressed in this paper offer one set of definitions, but there are many other
notions of fairness to which our results do not directly apply. For example, equality of opportunity
as introduced in Hardt et al. [2016]—requiring equality of true positive rates across groups—has
received considerable attention. Other notions of fairness and the trade-offs between them have
been studied by Joseph et al. [2016], Kleinberg et al. [2016], Chouldechova [2017], Berk et al. [2017],
Ritov et al. [2017]. In a recent work, Zafar et al. [2017b] depart from parity-based definitions and
propose instead a preference-based notion of fairness. Dwork et al. [2017] address the problem
of how best to incorporate information about protected characteristics for several of these other
fairness criteria.

Problematically, research into fairness in ML is often motivated by the case in which our ground-truth
data is itself biased. It is not clear how to assess many of these other fairness criteria in the presence
of biased data. Characterizing different forms of data bias and their impacts on algorithmic auditing
remains an important outstanding challenge.

Even if we accept that the solution for many proportional representation problems will take the form
of treatment disparity in favor of the disadvantaged group, questions remain of “how much?” and
“when?”. How can we say when treatment disparity is correcting for recent discrimination manifested,
e.g. as biased labels? When does it amount to affirmative action, correcting instead for historical
discrimination? And when is treatment disparity itself actually tantamount to discrimination, as
when used to exclude qualified Asian students from higher education [Hartocollis and Saul, 2017].
For now, it seems that these judgments must be exogenously specified by persons cognizant of the
social context in which algorithms operate.

Recent work on identifying proxy discrimination [Datta et al., 2017] and causal formulations of
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fairness [Nabi and Shpitser, 2017, Kilbertus et al., 2017, Kusner et al., 2017] offer some promising
approaches to framing such problems. To answer these questions, it would help to have a better
understanding of by what mechanisms and to what degree the data has been influenced by prejudice.
Perhaps data mining and machine learning have some role to play in asking these questions? The
answers could guide decisions about where and how strongly to intervene.

References
IBM Watson analytics blog. https://www.ibm.com/communities/analytics/
watson-analytics-blog/.

Civil rights act of 1964, 1964. Accessed on September 11th, 2017.

Philip Adler, Casey Falk, Sorelle A Friedler, Gabriel Rybeck, Carlos Scheidegger, Brandon Smith,
and Suresh Venkatasubramanian. Auditing black-box models by obscuring features. arXiv preprint
arXiv:1602.07043, 2016.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, and John Langford. A reductions approach to
fair classification. 2017.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. California Law Review, 2016.

Yahav Bechavod and Katrina Ligett. Learning fair classifiers: A regularization-inspired approach.
arXiv preprint arXiv:1707.00044, 2017.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal
justice risk assessments: The state of the art. arXiv preprint arXiv:1703.09207, 2017.

Dan Biddle. Adverse impact and test validation: A practitioner’s guide to valid and defensible
employment testing. Gower Publishing, Ltd., 2006.

Toon Calders and Sicco Verwer. Three naive bayes approaches for discrimination-free classification.
Data Mining and Knowledge Discovery, 2010.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 2017.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision
making and the cost of fairness. arXiv preprint arXiv:1701.08230, 2017.

Anupam Datta, Matt Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak Sen. Proxy non-
discrimination in data-driven systems. arXiv preprint arXiv:1707.08120, 2017.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Innovations in Theoretical Computer Science Conference, 2012.

Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Max Leiserson. Decoupled classifiers
for fair and efficient machine learning. arXiv preprint arXiv:1707.06613, 2017.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In KDD, 2015.

17

https://www.ibm.com/communities/analytics/watson-analytics-blog/
https://www.ibm.com/communities/analytics/watson-analytics-blog/


Matt Ford. Racism and the execution chamber. 2014. URL https://www.theatlantic.com/
politics/archive/2014/06/race-and-the-death-penalty/373081/.

Gabriel Goh, Andrew Cotter, Maya Gupta, and Michael P Friedlander. Satisfying real-world goals
with dataset constraints. In NIPS, pages 2415–2423, 2016.

James Grimmelmann and Daniel Westreich. Incomprehensible discrimination. California Law
Review, 2017.

Moritz Hardt, Eric Price, Nati Srebro, et al. Equality of opportunity in supervised learning. In
NIPS, 2016.

Anemona Hartocollis and Stepanie Saul. Affirmative action battle has a new fo-
cus: Asian americans. 2017. URL https://www.nytimes.com/2017/08/02/us/
affirmative-action-battle-has-a-new-focus-asian-americans.html?mcubz=1.

James E Johndrow and Kristian Lum. An algorithm for removing sensitive information: application
to race-independent recidivism prediction. arXiv preprint arXiv:1703.04957, 2017.

Matthew Joseph, Michael Kearns, Jamie Morgenstern, Seth Neel, and Aaron Roth. Rawlsian fairness
for machine learning. arXiv preprint arXiv:1610.09559, 2016.

Faisal Kamiran and Toon Calders. Classifying without discriminating. In Computer, Control and
Communication, 2009.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrimi-
nation. Knowledge and Information Systems, 33(1):1–33, 2012.

Faisal Kamiran, Toon Calders, and Mykola Pechenizkiy. Discrimination aware decision tree learning.
In ICDM, 2010.

Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regulariza-
tion approach. In ICDM Workshops, 2011.

Niki Kilbertus, Mateo Rojas-Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing,
and Bernhard Schölkopf. Avoiding discrimination through causal reasoning. arXiv preprint
arXiv:1706.02744, 2017.

Pauline T Kim. Data-driven discrimination at work. William & Mary Law Review, 58(3), 2017.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In KDD,
1996.

Matt J Kusner, Joshua R Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. arXiv
preprint arXiv:1703.06856, 2017.

Aditya Menon and Robert Williamson. The cost of fairness in binary classification. In Fairness,
Accountability and Transparency, 2018.

S. Moro, P. Cortez, and P. Rita. A data-driven approach to predict the success of bank telemarketing.
Decision Support Systems, 2014.

18

https://www.theatlantic.com/politics/archive/2014/06/race-and-the-death-penalty/373081/
https://www.theatlantic.com/politics/archive/2014/06/race-and-the-death-penalty/373081/
https://www.nytimes.com/2017/08/02/us/affirmative-action-battle-has-a-new-focus-asian-americans.html?mcubz=1
https://www.nytimes.com/2017/08/02/us/affirmative-action-battle-has-a-new-focus-asian-americans.html?mcubz=1


Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. arXiv preprint arXiv:1705.10378, 2017.

Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining. In KDD,
2008.

Ya’acov Ritov, Yuekai Sun, and Ruofei Zhao. On conditional parity as a notion of non-discrimination
in machine learning. arXiv preprint arXiv:1706.08519, 2017.

Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannessian, and Nathan Srebro. Learning non-
discriminatory predictors. arXiv preprint arXiv:1702.06081, 2017.

I. C. Yeh and C. H. Lien. The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients. Expert Systems with Applications, 2009.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. Fairness
constraints: Mechanisms for fair classification. In AISTATS, 2017a.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, Krishna P Gummadi, and Adrian
Weller. From parity to preference-based notions of fairness in classification. arXiv preprint
arXiv:1707.00010, 2017b.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations.
In ICML, 2013.

19


	1 Introduction
	2 Disparate Learning Processes
	3 Theoretical Analysis
	4 Empirical Analysis
	4.1 Synthetic data example: work experience and hair length in hiring
	4.2 Case study: Gender bias in CS graduate admissions
	4.2.1 Comparison with Treatment Disparity

	4.3 Examples on public datasets

	5 Related Work Beyond DLPs
	6 Discussion
	6.1 Coming to terms with treatment disparity
	6.2 Separating estimation and decision-making
	6.3 Fairness beyond disparate impact


